首页 > 热点

保密通信新突破 都有那些新突破

作者:佚名 来源:法律法规网 2017-12-05 08:53:10

中国随着科技越来越先进,我国的保密通信又有重大新突破,美国人都叹为观止,都有那些新突破?新華社北京12月4日電(記者胡喆)我國量子保密通信領域迎來又一突破。中國電子科技集團4日晚間發布了一款新型高速量...

法律法规网综合消息 中国随着科技越来越先进,我国的保密通信又有重大新突破,美国人都叹为观止,都有那些新突破?

新華社北京12月4日電(記者胡喆)我國量子保密通信領域迎來又一突破。中國電子科技集團4日晚間發布了一款新型高速量子隨機數發生器,量子隨機數實時産生速率大于5.4G比特每秒,極限值突破117G比特每秒,刷新了此前中國科學技術大學團隊68G比特每秒的記錄,成為目前世界上産生速率最高的量子隨機數發生器。

按照密碼設計的基本原則——“一切秘密寓于密鑰之中”。中國電子科技集團網絡安全公司總工程師饒志宏介紹,密鑰是密碼安全**的根基,而密鑰産生的質量如何、效率高低,則取決于隨機數産生的技術,即隨機數發生器的**能的好壞。

“通俗來講,隨機數産生的速率越高,就意味著在單位時間內能夠産生更多的鑰匙、做到真正意義上的‘隨機發鑰’,令企圖竊密的人眼花繚亂、無‘鑰’可用,難以在保密通信中迅速找到破解密碼的鑰匙並竊密,具備理論上的完美安全**。”饒志宏説。

通信安全是國家信息安全和經濟社會活動的基石,但如何確保通信的安全也是一個世界**難題。行業普遍認為量子保密通信技術,作為一種“無條件安全”的通信保密手段,能夠完美地解決信息傳輸過程中的安全問題,成為新一代信息網絡安全解決方案的核心。

作為量子保密通信核心設備之一,量子隨機數發生器的發展一直受到行業的關注。項目負責人之一、中國電子科技集團網絡安全公司高級工程師徐兵傑表示,此次發布的高速量子隨機數發生器具有“真隨機、超速率、小型化”等特點,共獲得5項發明專利,其離線輸出的量子隨機數比特率比傳統技術高3至4個量級,處于國際領先水平,可廣泛應用于量子通信産業和信息安全産業。

拓展阅读

揭秘:量子通信是如何做到“绝对安全”的

20世纪初,普朗克、爱因斯坦、玻尔开创了量子物理学研究。随后,海森堡、薛定谔、狄拉克等物理学家建立了量子力学。从此,量子物理学沿着两条路深刻地推动着人类文明发展。

一条路是“自上而下”的,即不断深入微观世界探索基本粒子。我们经常听到的“高能物理(即粒子物理)”、“大统一理论”、“大型强子对撞机”等等就是来自这个领域。

揭秘:量子通信是如何做到“绝对安全”的

另一条路是“自下而上”的,就是认识身边的各种物质背后的量子力学规律,并在此基础上发展各种高新技术来改变世界。我们经常听到的“凝聚态物理”、“半导体”、“激光”、“超导体”、“纳米材料”等等就来自这个方向。

这条“自下而上”的路曾经通过半导体技术和激光技术催生了第一次信息革命,使我们今天能便捷地使用各种计算机,智能手机,光纤通讯和整个互联网。

不过,尽管我们必须用量子力学才能理解半导体和激光的本质与工作原理,但这次信息革命仍然是属于“经典信息”的革命,我们处理的还是经典的二进制信息(即0或1,经典比特),信息传输和计算都基于经典物理学。

而随着量子信息的诞生,这一条路逐渐发展到了一个全新的阶段,正在催生着第二次信息革命,即一次完全属于量子物理学的量子信息革命。

量子信息包括量子通信和量子计算,即信息传输和计算都将直接植根于量子物理学。其中量子通信作为排头兵,走在了这次信息革命的最前面,成为它的第一个突破点。

揭秘:量子通信是如何做到“绝对安全”的

▲量子通信与传统通信相比,优势明显(刘琪制图)

量子通信按照应用场景和所传输的比特类型可分为“量子密钥分配”和“量子态传输”两个方向。

量子比特:

传统的信息技术扎根于经典物理学,一个比特在特定时刻只有特定的状态,要么0,要么1,所有的计算都按照经典的物理学规律进行。

量子信息扎根于量子物理学,一个量子比特(qubit)就是0和1的叠加态。相比于一个经典比特只有0和1两个值,一个量子比特的值有无限个。直观来看就是把0和1当成两个向量,一个量子比特可以是0和1这两个向量的所有可能的组合。

揭秘:量子通信是如何做到“绝对安全”的

图1.表示量子比特的Bloch球,球面代表了一个量子比特所有可能的取值。来源Wikipedia

但是需要指出的是,一个量子比特只含有零个经典比特的信息。因为一个经典比特是0或1,即两个向量。而一个量子比特只是一个向量(0和1的向量合成),就好比一个经典比特只能取0,或者只能取1,信息量是零个比特。

其中,“量子密钥”使用量子态不可克隆的特**来产生二进制密码,为经典比特建立牢不可破的量子保密通信。

量子不可克隆定理:

复制(即克隆)任何一个粒子的状态前,首先都要测量这个状态。但是量子态不同于经典状态,它非常脆弱,任何测量都会改变量子态本身(即令量子态坍缩),因此量子态无法被任意克隆。这就是量子不可克隆定理,已经经过了数学上严格的证明。

窃听者在窃听经典信息的时候,等于复制了这份经典信息,使信息的原本接收者和窃听者各获得一份。但是在量子态传输时,因为无法克隆任意量子态,于是在窃听者窃听拦截量子通讯的时候,就会销毁他所截获到的这个量子态。

在量子密码里(如BB84协议),正是由于量子不可克隆定理,光子被截获时经过了测量,偏振状态就发生了改变。接收方就会察觉密码的错误,停止密码通信。这也就确保了通信时量子密码的安全**,从而也就保证了加密信息的安全**。

在传输量子比特时,由于量子不可克隆定理,销毁量子态就是销毁了它所携带的量子比特,于是无论是接收者还是窃听者都无法再获得这个信息。通讯双方会轻易察觉信息的丢失,因此量子比特本身具有绝对的保密**。量子不可克隆定理使得我们直接传输量子比特的时候,不用再建立量子密码,而是直接依靠量子比特本身的安全**就可以做到信息不被窃取。

目前量子保密通信已经步入产业化阶段,开始保护我们的信息安全;“量子隐形传态”是利用量子纠缠来直接传输量子比特,它还处于基础研究阶段,未来将应用于量子计算机之间的直接通信。

揭秘:量子通信是如何做到“绝对安全”的

量子密钥

目前实用化的量子密钥分配是由查理斯.本内特(Charles Bennett)和吉勒.布拉萨(Gilles Brassard)在1984年提出的BB84协议。

该协议把密码以密钥的形式分配给信息的收发双方,因此也称作“量子密码”。该协议利用光子的偏振态来传输信息。因为光子有两个偏振方向,而且相互垂直,所以信息的发送者和接收者都可以简单地选取90度的测量方式,即“+”;或45度的测量方式,即“×”,来测量光子。在90度的测量方式中,偏振方向“↑”代表0,偏振方向“→”代表1;在45度的测量方式中,偏振方向“↗”代表0,偏振方向“↘”代表1。

这样选择测量方式的好处是,如果选择“+”来测量偏振态“↗”或“↘”时,会得到50%的几率为“→”,50%的几率为“↑”。同理,如果选择“×”来测量“→”或“↑”时,会得到50%的几率为“↗”,50%的几率为“↘”。

为了生成一组二进制密钥,发送者首先随机生成一组二进制比特,我们称之为“发送者的密钥比特”。同时发送者对每个“发送者的密码比特”都随机选取一个测量模式(“+”或者“×”),然后把在这个测量模式下,每个“发送者的密码比特”所对应的偏振状态的光子发送给接受者。比如传输一个比特0,选择的测量模式为+,则发送者需要发出一个偏振态为↑的光子。

接收者这边也对接收到的每个比特随机选择“+”或者“×”来测量,会测量出一组0和1。当接收者获得全部测量结果后,他要和发送者之间通过经典信道(如电话,短信,QQ等等)建立联系,互相分享各自用过的测量方式。这时他们只保留相同的测量方式(“+”或者“×”),舍弃不同的测量方式。于是保留下来的测量方式所对应的二进制比特,就是他们最终生成的密码,如表2。

揭秘:量子通信是如何做到“绝对安全”的

▲表2.BB84通讯协议

通过表2我们可以看出,只有当发送方和接收方所选择的测量方式相同的时候,传输比特才能被保留下来用作密钥。

如果存在信息截获者,他也同样要随机地选取“+”或者“×”来测量发送者发送的比特。

例如,发送者选取测量方式“+”,然后发送“→”来代表1。如果截获者选取的也是“+”,他的截获就不会被察觉。但是因为截获者是随机选取的测量方式,他也有50%的概率选择“×”,于是量子力学的测量概率特**使光子的偏振就变为了50%的概率“↗”和50%的概率“↘”。

在上面的这种情况下,作为接收方如果选取了和发送方同样的测量方式“+”,则把这个比特当做密码。但是接收方测量的是经过截获的光子,即光子的偏振因为测量已经坍缩成了50%的概率↗和50%的概率↘,接收方测量最终结果无论如何都会变为50%的概率↑和50%的概率→。于是测量这个光子偏振的时候,发送方和接收方结果不同的概率为50%×50%=25%。

因此想知道是否存在截获者,发送方和接收方只需要拿出一小部分密钥来对照。如果发现互相有25%的不同,那么就可以断定信息被截获了。同理,如果信息未被截获,那么二者密码的相同率是100%。于是BB84协议可以有效发现窃听,从而关闭通信,或重新分配密钥,直到没人窃听为止。

BB84量子密钥分配协议使得通讯双方可以生成一串绝对保密的量子密钥,用该密钥给任何二进制信息加密(比如做最简单的二进制“异或”操作,见表3)都会使加密后的二进制信息无法被解密,因此从根本上保证了传输信息过程的安全**。在这个协议基础上,世界各国都开展了传输用量子密钥加密过的二进制信息的网络建设,即量子保密通信网。中国在这方面走在了世界最前面。

揭秘:量子通信是如何做到“绝对安全”的

▲表3.利用量子密钥给需要传输的原始信息做“异或”加密

中国科学技术大学潘建伟团队在合肥市实现了国际上首个所有节点都互通的量子保密通信网络,后又利用该成果为60周年国庆阅兵关键节点间构建了“量子通信热线”,之后研发的新型量子通信装备在北京投入常态运行,为“十八大”等国家重要政治活动提供信息安全保障。

科大国盾量子通信技术有限公司利用所转化的成果建成了覆盖合肥城区的世界上首个规模化量子通信网络,建成了覆盖合肥城区的世界上首个规模化量子保密通信网络,标志着大容量的城域量子通信网络技术开始成熟。

2013年国家批准立项的量子保密通信“京沪干线”,由中国科学技术大学承建,将于2016年年底前建成。该干线连接北京上海,全长2000余公里,是世界首条量子保密通信主干网,将大幅提高我国军事,政务,银行和金融系统的安全**。

揭秘:量子通信是如何做到“绝对安全”的

量子纠缠态

我们可以用量子密钥给经典二进制信息加密。但是当我们需要传输量子比特时,就无法再使用量子密钥了,而需要使用“量子隐形传态”。理解量子隐形传态,首先要理解量子纠缠。

量子力学中最神秘的就是叠加态,而“量子纠缠”正是多粒子的一种叠加态。

以双粒子为例,一个粒子A可以处于某个物理量的叠加态,用一个量子比特来表示,同时另一个粒子B也可以处于叠加态。当两个粒子发生纠缠,就会形成一个双粒子的叠加态,即纠缠态。例如有一种纠缠态就是无论两个粒子相隔多远,只要没有外界干扰,当A粒子处于0态时,B粒子一定处于1态;反之,当A粒子处于1态时,B粒子一定处于0态。

用薛定谔的猫做比喻,就是A和B两只猫如果形成上面的纠缠态:

揭秘:量子通信是如何做到“绝对安全”的

无论两只猫相距多远,即便在宇宙的两端,当A猫是“死”的时候,B猫必然是“活”;当A猫是“活”的时候,B猫一定是“死”(当然真实的情况是猫这种宏观物体不可能把量子纠缠维持这么长时间,几亿亿亿亿分之一秒内就会解除纠缠。但是基本粒子是可以的,比如光子。)。

这种跨越空间的、瞬间影响双方的量子纠缠曾经被爱因斯坦称为“鬼魅的超距作用”(spooky action at a distance),并以此来质疑量子力学的完备**,因为这个超距作用违反了他提出的“定域**”原理,即任何空间上相互影响的速度都不能超过光速。这就是著名的“EPR佯谬”(编者注:EPR是三位物理学家姓氏的首字母缩写,其中,E是爱因斯坦,P是波多尔斯基,R是罗森,1935年,他们三人为论证量子力学的不完备**而提出了该佯谬)。

后来物理学家玻姆在爱因斯坦的定域**原理基础上,提出了“隐变量理论”来解释这种超距相互作用。

不久物理学家贝尔提出了一个不等式,可以来判定量子力学和隐变量理论谁正确。如果实验结果符合贝尔不等式,则隐变量理论胜出。如果实验结果违反了贝尔不等式,则量子力学胜出。

上一篇 下一篇

I 热点 / Hot